3,240 research outputs found

    Luminosity Tuning at the Large Hadron Collider

    Get PDF
    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)inversion and conditioning of the response matrix by singular value decomposition, and (3)conditioning the response matrix by multidimensional minimization using an adapted Moore Penrose method. For each accelerator, LHC and RHIC, a set of knobs was calculated and the performance compared. In addition the knobs for RHIC were successfully applied to the accelerator. Simultaneously this approach allows us theoretically to measure the beam sizes of both colliding beams at the IP, based on the tuneability provided by the knobs. This possibility was investigated. The standard method for LEP to measure the IP beta-functions was adapted and advanced to the asymmetric LHC lattice

    Distance dependence of angular correlations in dense polymer solutions

    Full text link
    Angular correlations in dense solutions and melts of flexible polymer chains are investigated with respect to the distance rr between the bonds by comparing quantitative predictions of perturbation calculations with numerical data obtained by Monte Carlo simulation of the bond-fluctuation model. We consider both monodisperse systems and grand-canonical (Flory-distributed) equilibrium polymers. Density effects are discussed as well as finite chain length corrections. The intrachain bond-bond correlation function P(r)P(r) is shown to decay as P(r)∼1/r3P(r) \sim 1/r^3 for \xi \ll r \ll \r^* with ξ\xi being the screening length of the density fluctuations and r∗∼N1/3r^* \sim N^{1/3} a novel length scale increasing slowly with (mean) chain length NN.Comment: 17 pages, 5 figures, accepted for publication at Macromolecule

    BEITRAG ZUR KENNTNIS DER INDO-MALAYISCHEN MALACODERMATA (COL.)

    Get PDF
    Die nachstehend beschriebenen Arten entstammen grosstenteilseiner umfangreichen Bestimmungssendung, die ich Hernn M. A. LIEFTINCK ,Entomologe am ZooIogischen Museum und Laboratorium in Buitenzorg verdanke, die irbrigen erhieIt ich von Herrn F. C. DRESCHER,oder sie stammen aus meiner eigenen SammIung. Die Stiieke aus dem Buitenzorger Museum (Typen jetzt im Leidener Museum) sind jeweils am Schlusse der Besehreibung gekennzeichnet

    Characterization of local dynamics and mobilities in polymer melts - a simulation study

    Full text link
    The local dynamical features of a PEO melt studied by MD simulations are compared to two model chain systems, namely the well-known Rouse model as well as the semiflexible chain model (SFCM) that additionally incorporates chain stiffness. Apart from the analysis of rather general quantities such as the mean square displacement (MSD), we present a new statistical method to extract the local bead mobility from the simulation data on the basis of the Langevin equation, thus providing a complementary approach to the classical Rouse-mode analysis. This allows us to check the validity of the Langevin equation and, as a consequence, the Rouse model. Moreover, the new method has a broad range of applications for the analysis of the dynamics of more complex polymeric systems like comb-branched polymers or polymer blends.Comment: 6 pages, 5 figure

    Inhomogeneous elastic response of silica glass

    Full text link
    Using large scale molecular dynamics simulations we investigate the properties of the {\em non-affine} displacement field induced by macroscopic uniaxial deformation of amorphous silica,a strong glass according to Angell's classification. We demonstrate the existence of a length scale ξ\xi characterizing the correlations of this field (corresponding to a volume of about 1000 atoms), and compare its structure to the one observed in a standard fragile model glass. The "Boson-peak'' anomaly of the density of states can be traced back in both cases to elastic inhomogeneities on wavelengths smaller than ξ\xi, where classical continuum elasticity becomes simply unapplicable

    The Spectral and Statistical Properties of Turbulence Generated by a Vortex/Blade-Tip Interaction

    Get PDF
    The perpendicular interaction of a streamwise vortex with the tip of a lifting blade was studied in incompressible flow to provide information useful to the accurate prediction of helicopter rotor noise and the understanding of vortex dominated turbulent flows. The vortex passed 0.3 chord lengths to the suction side of the blade tip, providing a weak interaction. Single and two-point turbulence measurements were made using sub-miniature four sensor hot-wire probes 15 chord lengths downstream of the blade trailing edge; revealing the mean velocity and Reynolds stress tensor distributions of the turbulence, as well as its spanwise length scales as a function of frequency. The single point measurements show the flow downstream of the blade to be dominated by the interaction of the original tip vortex and the vortex shed by the blade. These vortices rotate about each other under their mutual induction, winding up the turbulent wakes of the blades. This interaction between the vortices appears to be the source of new turbulence in their cores and in the region between them. This turbulence appears to be responsible for some decay in the core of the original vortex, not seen when the blade is removed. The region between the vortices is not only a region of comparatively large stresses, but also one of intense turbulence production. Velocity autospectra measured near its center suggests the presence quasi-periodic large eddies with axes roughly parallel to a line joining the vortex cores. Detailed two-point measurements were made on a series of spanwise cuts through the flow so as to reveal the turbulence scales as they would be seen along the span of an intersecting airfoil. The measurements were made over a range of probe separations that enabled them to be analyzed not only in terms of coherence and phase spectra but also in terms of wave-number frequency (kappa-omega) spectra, computed by transforming the measured cross-spectra with respect to the spanwise separation of the probes. These data clearly show the influence of the coherent eddies in the spiral wake and the turbulent region between the cores. These eddies produce distinct peaks in the upwash velocity kappa-omega spectra, and strong anisotropy manifested both in the decay of the kappa-omega spectrum at larger wave-numbers and in differences between the kappa-omega spectra of different components. None of these features are represented in the von Karman spectrum for isotropic turbulence that is often used in broadband noise computations. Wave-number frequency spectra measured in the cores appear to show some evidence that the turbulence outside sets tip core waves, as has previously been hypothesized. These spectra also provide for the first time a truly objective method for distinguishing velocity fluctuations produced by core wandering from other motions
    • …
    corecore